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2 Depto de Ingenierı́a Eléctrica, Sección Computación, Centro de Investigación y de Estudios
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Abstract
Reversible cellular automata are invertible discrete dynamical systems which
have been widely studied both for analysing interesting theoretical questions
and for obtaining relevant practical applications, for instance, simulating
invertible natural systems or implementing data coding devices. An important
problem in the theory of reversible automata is to know how the local behaviour
which is not invertible is able to yield a reversible global one. In this
sense, symbolic dynamics plays an important role for obtaining an adequate
representation of a reversible cellular automaton. In this paper we prove the
equivalence between a reversible automaton where the ancestors only differ at
one side (technically with one of the two Welch indices equal to 1) and a full
shift. We represent any reversible automaton by a de Bruijn diagram, and we
characterize the way in which the diagram produces an evolution formed by
undefined repetitions of two states. By means of amalgamations, we prove that
there is always a way of transforming a de Bruijn diagram into the full shift.
Finally, we provide an example illustrating the previous results.

PACS numbers: 02.10.Yn, 05.65.+b, 45.70.Qj, 87.18.Bb

1. Introduction

Cellular automata are discrete dynamical systems which are able to produce complex
phenomena by means of simple local interactions. They were conceived by John von Neumann
for constructing a self-reproducing system [19]. Other relevant works in cellular automata
theory have been developed by Conway [5] and Wolfram [20].
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The study of the reversible behaviour in cellular automata was first treated by Moore and
Myhill [13, 15], but the main reference for the one-dimensional case is provided by the paper
of Hedlund studying reversible automata as automorphisms of the full shift, establishing also
the combinatorial properties fulfilled by these systems and suggesting the relation between
symbolic dynamics and cellular automata theory.

Although very important results have been obtained about reversible one-dimensional
cellular automata such as their detection by computational procedures [1, 7, 14], their
characterization by block permutations [9] and their algebraic construction and simulation with
a smaller neighbourhood size [2], few papers have analysed the relation between reversible
automata and symbolic dynamics; some examples are the results by Nasu [16, 17], Kari [8]
and Boyle and Maass [4].

Symbolic dynamics consists of describing a dynamical system by means of a finite set of
symbols, thus the shift of sequences of symbols describes different behaviour of the system.
If there is a finite set of sequences which cannot be generated by this shift then the system
is a shift of finite type. A common practice in symbolic dynamics is to use graphs and
matrices because they represent shift systems which are analysed in several ways. We can use
the theoretical tools developed in symbolic dynamics for analysing the different evolutions
produced by a one-dimensional cellular automaton, in particular, we shall study the reversible
case.

The simplest kind of shift of finite type is the one where the set of forbidden sequences is
empty; it is called a full shift. If the full shift is described by k states then it is a full shift of k
states. A graph presentation of the full shift with k states is one node with k self-loops.

Reversible one-dimensional cellular automata are examples of systems which can generate
every sequence of states, and they have a graph presentation by means of de Bruijn diagrams.
Thus, the question is if we can specify some transformation from these diagrams into the
corresponding full shift.

In this paper we shall investigate reversible automata where the ancestors of a given
sequence of states only differ at one side, that is, reversible automata with a Welch index 1.
In this sense, the goals of this paper are:

(i) To show the different kinds of paths in the de Bruijn diagram which define the sequences
composed by the finite repetition of one state followed by the finite repetition of another
state.

(ii) To prove that there exists a transformation from the de Bruijn diagram into the full shift
of k states.

The relevance of this paper is to explain how the states are communicated to form in a
single way all the sequences of states of any finite length, illustrating the transition from local
behaviour to reversible global behaviour. The transformation from de Bruijn diagrams into
full shifts proves that reversible one-dimensional cellular automata with a Welch index 1 are
conjugated to the full shifts.

The paper is organized as follows: section 2 presents the basic concepts and the properties
of reversible one-dimensional cellular automata. In particular, we expose their transformation
into cellular automata of neighbourhood size 2 and their representation by de Bruijn diagrams.
Section 3 provides the tools from symbolic dynamics used for studying de Bruijn diagrams.
Section 4 exposes the different kinds of paths in the de Bruijn diagram which yield sequences
of states of any finite length. Section 5 proves that there exists a transformation from any
reversible automaton into the full shift. Section 6 gives an example of the previous results and
the final section gives the concluding remarks of the paper.
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2. Fundaments

A one-dimensional cellular automaton consists of a one-dimensional array of cells where each
cell takes a value from a finite set K of states. The initial assignment from states to the cells
of the array is the initial configuration of the automaton. The cardinality of K is represented
by k and for m ∈ Z

+, let Km be the set of sequences with m cells. Let K∗ be the whole set
of finite sequences of cells, for a ∈ K let an be the sequence in Kn formed by n repetitions
of a, let a∗ be the finite repetition of a and for w ∈ K∗ let w∗ be the finite repetition of
w. The dynamics of the automaton is given by a local mapping, for some n ∈ Z

+ there is a
mapping ϕ : Kn → K; each sequence in Kn is a neighbourhood of the automaton, n is the
neighbourhood size and the mapping ϕ is the evolution rule of the automaton.

The evolution rule is applied over each neighbourhood of the initial configuration at the
same time, where every neighbourhood shares n−1 cells with the contiguous neighbourhoods
at both sides. The evolution rule yields another configuration and the same process is
indefinitely repeated defining a mapping between configurations of the automaton; this
global mapping is the evolution of the cellular automaton. The global transition between
configurations depends on the evolution rule, that is, the global behaviour is based on the local
one. In this paper we shall only study finite configurations; in this case we put together the first
cell of the initial configuration with the last one, and we have complete neighbourhoods for
each position. The initial configuration forms a ring which yields another ring with the same
number of cells by the evolution of the automaton. A one-dimensional cellular automaton
with K states, neighbourhood size n and evolution rule ϕ is represented by A = (k, n, ϕ).

For a cellular automaton A = (k, n, ϕ), if w ∈ Kn and ϕ(w) = a ∈ K then a is the
evolution of w and we say that w is an ancestor of a. This ancestor has n−1 more cells than a,
therefore for m ∈ Z

+ and w ∈ Km, the ancestors of w have m + n − 1 cells. If some sequence
w ∈ Km cannot be generated by ϕ and it may only appear in the initial configuration, then w

belongs to the Garden of Eden of A.
In order to understand the global evolution of a cellular automaton, we ought to analyse its

evolution rule. In this sense, a relevant procedure which simplifies the study of A = (k, n, ϕ)

consists of transforming A into another automaton A′ = (kn−1, 2, τ ). This result is presented
independently by Kari [8] and Boykett [2], and we shall give only a brief description of the
process.

For a cellular automaton A = (k, n, ϕ), take the subset B ⊆ Kn−1 such that no element
in B belongs to the Garden of Eden of A. Hence, every ancestor of each w ∈ B has 2n − 2
cells and the whole set of ancestors of B is K2n−2. Take another set S of cardinality kn−1, then
we can define a bijection from Kn−1 into S. Thus, there is a bijection both from K2n−2 into S2

and from B into C ⊆ S. By the evolution rule ϕ, we can define a mapping τ : S2 → C; but
τ is also the evolution rule of a cellular automaton A′ = (kn−1, 2, τ ), and we can simulate the
original behaviour of A by another evolution rule of neighbourhood size 2. Therefore, we just
need to analyse cellular automata of neighbourhood size 2 to understand the other cases.

For a cellular automaton A = (k, 2, ϕ), the evolution rule ϕ has a matrix representation M:

• The indices of M are the states in K.
• For a, b ∈ K , each entry (a, b) in M presents the neighbourhood ab ∈ K2.
• For a, b, c ∈ K , the entry (a, b) = c in M if and only if ϕ(ab) = c.

The matrix M induces a digraph (or directed graph) D:

• The nodes of D are the states in K.
• D is a complete digraph, that is, for each neighbourhood ab ∈ K2 there is a directed edge

in D from a to b.
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Figure 1. Ancestors in a reversible automaton; only one initial state is equal to a final one.

• Each directed edge in D defined by ab ∈ K2 is labelled by c ∈ K if and only if (a, b) = c

in M.

For a cellular automaton A = (k, 2, ϕ), D is the de Bruijn diagram representing the
evolution rule ϕ [12, 18]. The labelled paths in D represent the sequences of states generated
by ϕ, and the nodes forming such paths establish the ancestors of these sequences.

A special kind of cellular automaton is the one where the global mapping between
configurations is invertible, that is, for A = (k, 2, ϕ) there exists another evolution rule ϕ−1

such that the automaton A−1 = (k,m, ϕ−1) (possibly m �= 2) presents the inverse global
behaviour of A [15]. Thus, A is reversible and ϕ−1 is the inverse evolution rule of ϕ.

Reversible one-dimensional cellular automata are carefully analysed by Hedlund [6]; his
work presents two fundamental properties for reversible automata A = (k, 2, ϕ):

Property 1 (Uniform multiplicity of ancestors). For each m ∈ Z
+, every sequence w ∈ Km

has the same number of ancestors as all the other sequences, this number is equal to k.

Property 2 (Welch indices). For some n ∈ Z
+ and every m � n, the ancestors of each

sequence w ∈ Km have L initial states, a common central part and R final states, fulfilling
that LR = k. L and R are the Welch indices of the automaton.

Property 1 says that a reversible automaton does not have Garden of Eden and
property 2 specifies that the ancestors of a given sequence differ at the ends, sharing the
same central sequence of states (figure 1). Welch indices show the number of different ending
states at both sides for the ancestors of a given sequence. For a reversible automaton, another
important property is established by Nasu in [16]:

Property 3 (Boundary condition). Let n be the minimum size of the neighbourhoods in the
inverse rule, for every m � n and each w ∈ Km there is one and only one ancestor of w with
form ava ∈ Kn+1; a ∈ K and v ∈ Kn−1.

Property 3 defines a single ancestor for the sequence formed by the finite repetition of w,
preserving the reversible behaviour of the automaton.

Let D be the de Bruijn diagram of a reversible automaton, then D has the following
features by properties 1–3:

• For each m ∈ Z
+ and every w ∈ Km, there are k paths representing w in D.

• For some n ∈ Z
+ and every m � n, the k paths representing w ∈ Km in D have L initial

nodes, a common central node and R final nodes.
• For some n ∈ Z

+ and every m � n, there is one and only one path representing w ∈ Km

in D with the initial node equal to the final one.
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D has k self-loops, each one labelled by a different state by property 3. For a, b ∈ K , a
reversible automaton is able to produce the sequence a∗b∗; this sequence is relevant because it
represents the path in D joining two self-loops, and from these kinds of paths larger sequences
are generated.

For reversible automata with a Welch index 1, we shall characterize the paths a∗b∗ in D;
from this analysis we shall investigate the relation between a reversible automaton and the full
shift. For this reason the next section provides the basic concepts of symbolic dynamics used
for obtaining the results of this paper.

3. Symbolic dynamics

Symbolic dynamics consists of studying a dynamical system by means of discretizing both
space and time. The idea is to divide the set of possible states of the system into a finite
number of pieces, each represented by a symbol. Thus, we can obtain sequences of symbols
representing the dynamics of the system in discrete time steps.

Using the finite set of symbols presenting the states of the system, we can now specify
a digraph which shows the transitions between these states. The edges of the digraph are
labelled by the states of the system, hence the paths in the digraph represent the long-term
behaviour of the system; this kind of representation is an edge shift. If the edge shift has k
states and it is able to produce any possible sequence of states, then the edge shift is a full shift
of k states.

In this paper we shall only use simple concepts of symbolic dynamics that are taken from
the book by Marcus and Lind [11]; other relevant introductions to symbolic dynamics are
presented both by Kitchens [10] and Boyle [3]. An important question in symbolic dynamics
is to compare different edge shifts and decide if they are equivalent. In order to resolve this
question, we shall define two basic operations which transform one edge shift into another
equivalent one:

Definition 1 (Elementary out-splitting). Let G be a digraph representing an edge shift, and
let s, t be two nodes of G. Let Es be the set of outgoing edges from s and let us partition Es

into n disjoint sets E1
s . . . En

s . An elementary out-splitting of G at node s yields a new graph
G′ in which s is replaced by n nodes s1 . . . sn:

• For 1 � i � n, if e is an edge going from s to t in G and e ∈ Ei
s , then e goes from si to t

in G′.
• For 1 � i � n, if e is an edge going from t to s in G then e goes from t to all the si nodes

in G′.

For an elementary out-splitting the inverse operation is the following one:

Definition 2 (Elementary in-amalgamation). Let G be a digraph representing an edge shift,
and let s, t be two nodes of G. Let Es,Et be the set of incoming edges in s and t, respectively.
If the first two conditions are fulfilled, then we can perform an elementary in-amalgamation
of s, t which produces a new graph G′ where the nodes s, t are replaced by a single node u:

• Every edge in Es has a corresponding edge in Et with the same label and the same initial
node.

• There is no outgoing edge from s with the same label and the same terminal node as an
outgoing edge from t.

• If e is an incoming edge of s and t, respectively, from the same initial node in G, then e
goes now from this initial node to u in G′.
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Figure 2. Out-splittings for the full shift of two states.

• If e and e′ are distinct outgoing edges from s and t, respectively, to the same terminal
node in G, then both edges go now from u to this terminal node in G′.

For the full shift of two states, examples of out-splittings are presented in figure 2.
Every edge shift G has a matrix representation M where the row and column indices of

the matrix are the nodes of G and the entry (i, j) in M is equal to the labelled edge going
from i to j in G. For two edge shifts G1 and G2, take their matrix representations M1 and M2,
respectively, thus G1 and G2 have an equivalent behaviour if there exists a sequence (D0, E0),
(D1, E1) , . . . , (Dl, El) of pairs of nonnegative integral matrices such that:

M1 = D0E0 E0D0 = A1

A1 = D1E1 E1D1 = A2

A2 = D2E2 E2D2 = A3

...

Al = DlEl ElDl = M2

(1)

in this case we say that G1 and G2 are strong shift equivalent with lag l. If two edge shifts G1

and G2 are strong shift equivalent then we can transform G1 into G2 by means of out-splittings
and in-amalgamations [11]. In this paper we shall take a de Bruijn diagram associated with a
reversible automaton as an edge shift which may generate each possible sequence of states.

For a reversible automaton A = (k, 2, ϕ) the de Bruijn diagram has k self-loops, one for
each state of K. For a, b ∈ K , the paths between the self-loops of D must establish a single
way for producing the sequence a∗b∗. In the next sections two fundamental questions shall
be treated:

(i) How are the self-loops of D communicated?

(ii) How can we establish a strong shift equivalence between D and the full shift of k states?

4. Communication between states

For a reversible automaton, each node of the de Bruijn diagram has a self-loop labelled by
some state in K. The self-loop labelled by a ∈ K is the unique part of D able to generate the
sequence a∗. For simplicity, the self-loop labelled by a will be referred to as the self-loop a.

Suppose that some node defines the self-loop a and another node has the self-loop b,
hence the sequence a∗b∗ must be produced in D by a single path going from the self-loop a to
the self-loop b. More paths with these characteristics imply ancestors with several common
central states for a∗b∗, therefore the automaton could not be reversible. For a∗b∗ we classify
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a
b b b b

b. . .
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(a) direct path 
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Figure 3. Paths forming the sequence a∗b∗.

a path between the self-loops a, b in D as follows:

• Direct path. If there is a sequence of edges from a to b all labelled by b.
• Indirect path. If there is a sequence of edges from a to b all labelled by a.

In other words, a direct path joins the self-loop a with the self-loop b by means of b∗ and
an indirect path by means of a∗ (figure 3).

In order to characterize the paths a∗b∗ defined in the de Bruijn diagram of a reversible
automaton with a Welch index 1, we shall take a relevant result by Kari who establishes
equivalence relations between the states of the automaton [8].

For a reversible automaton with Welch index L = 1, there is no pair of edges with
the same label in D beginning from two different nodes and finishing into the same node.
Therefore, each column in M is a permutation of K and for a, b, c ∈ K , if ϕ(ab) = c then we
define a function φ as φc(b) = a, where φc(b) presents the initial node connected with b by
an edge labelled by c in D. The function φ may be defined for sequences with more states,
for n � 2 and w ∈ Kn;φw(b) = a means that there is a path labelled by w in D from node a
to node b. Using φ we can establish an equivalence relation ρn between the states of K; two
states a, b belong to ρn if and only if φw(a) = φw(b) for all w ∈ Kn. For ρ0 we take λ as the
empty sequence and we define that φλ(a) = a for each a ∈ K .

A reversible automaton with Welch index L = 1 holds that there exists n ∈ Z
+ such that

the paths of length m � n labelled by w ∈ Km begin from a single node and finish into all
the nodes in D by property 2. Therefore, ρn has only one equivalence class formed by all the
states in K; based on this remark, Kari proves the following result [8]:

Lemma 1. For i ∈ Z
+ and a reversible automaton A = (k, 2, ϕ) with Welch indices L = 1

and R = k, the equivalence relation ρi holds that:

• ρ0 has k equivalence classes.
• ρi ⊆ ρi+1.
• ρi �= ρi+1 if ρi has more than one equivalence class.

From lemma 1 we note that the number of equivalence classes in ρi decreases as i grows,
and another important result is defined:

Theorem 1. For a reversible automaton A = (k, 2, ϕ) with Welch indices L = 1 and R = k,
the de Bruijn diagram D has only indirect paths joining the self-loops.

Proof. We know that all the states in A belong to the same equivalence class in ρk−1 by
lemma 1. Thus, all the paths labelled by a sequence w ∈ Kk−1 in D go from one single node
to k distinct nodes.

Therefore, for a, b ∈ K , the path labelled by ak−1 goes from the node with the self-loop a
to all the other nodes in D. The initial node must be the one defining the self-loop a, otherwise
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there are two different equivalence classes in ρk−1, which is not possible. Thus the path a∗b∗

going from the self-loop a to the self-loop b is an indirect path. �

With these results we can define a computational procedure for reviewing the existence
of indirect paths analysing the matrix M, take all the entries (i, j) in M such that i �= j .

(i) If (i, j) = (i, i) then there is an indirect path from the self-loop a = (i, i) to the self-loop
b = (j, j).

(ii) If an indirect path from the self-loop a = (i, i) to the self-loop b = (j, j) has been
defined, then look for an entry (j,m) = a to establish an indirect path from the self-loop
a to the self-loop c = (m,m). Repeat the step recursively.

For a cellular automaton, this procedure is useful to establish a set of restrictions which
show irreversible behaviour:

(i) There is more than one indirect path from the self-loop a to the self-loop b.
(ii) Not all the indirect paths are defined for all the ordered pairs of self-loops.

For a reversible automaton with Welch index R = 1, an analogous result is established
taking φc(a) = b if and only if ϕ(ab) = c. Using now the previous analysis for reversible
automata with Welch index R = 1, we obtain the following result:

Corollary 1. For a reversible automaton A = (k, 2, ϕ) with Welch indices L = k and R = 1,
the de Bruijn diagram D has only direct paths joining the self-loops.

Indirect paths between self-loops are relevant to know if a cellular automaton is reversible,
but a better characterization shall be presented in the next section where we analyse the relation
between reversible automata and full shifts.

5. Amalgamations and reversibility

In addition to the results about the paths between self-loops, we can also use lemma 1 to define
a strong shift equivalence between reversible automata and full shifts.

Theorem 2. A cellular automaton A = (k, 2, ϕ) is reversible with Welch index L = 1 if and
only if every column of M is a permutation of K and there is a sequence of n in-amalgamations
transforming D into the full shift of k elements.

Proof. Let A be reversible with Welch index L = 1; by lemma 1 there are at least two states
a, b ∈ K which belong to the same equivalence class in ρ1, hence the incoming edges going
from each node to a, b have the same label in D.

The nodes a, b have different outgoing edges to another node because A has Welch index
L = 1. Thus, a, b have the same incoming edges from each node and different outgoing edges
to each node, and we can apply an in-amalgamation over a, b.

For ρ2 we have that a, b ∈ K are in the same equivalence class whether they also belong
to the same class in ρ1 or for the same incoming edge, a, b are connected with two distinct
nodes a′, b′ ∈ K which belong to the same equivalence class in ρ1.

But in the latter case, a′, b′ form a new node u by the in-amalgamation defined by ρ1;
Thus, both nodes a, b have the same incoming edge from the amalgamated node u. Therefore,
a, b have the same incoming edges from each node and different outgoing edges to each node
because L = 1, and ρ2 defines the in-amalgamation of a, b.

By induction, if ρn defines an in-amalgamation in D, for ρn+1 the nodes a, b belong
to the same equivalence class whether a, b also belong to the same class in ρn or there are
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two different nodes a′, b′ which belong to the same class in ρn and are connected with a, b,
respectively, with the same edge, hence we can amalgamate a, b.

Finally, ρk−1 has a single equivalence class where all the nodes in D are amalgamated
into a single node with k self-loops, representing a full shift of k symbols.

On the other hand, if each column of M is a permutation of K and there is a sequence
of n in-amalgamations transforming D into the full shift of k symbols, then in M there are at
least two equal columns a, b such that φw(a) = φw(b) for each w ∈ K and a, b belong to the
same equivalence class in ρ1. Following the in-amalgamations, for 1 � i � n we have that
the amalgamated matrix Mi has at least two identical columns a, b. If row u in Mi represents
two or more amalgamated states, then the elements of u are identical columns in Mi−1, and
φw(a′) = φw(b′) for a′, b′ amalgamated states in u and w ∈ K , hence φw(a) = φw(b) for all
w ∈ K2 where a, b are identical columns in Mi .

By induction, the same property is fulfilled for larger lengths, where φw(a) = φw(b) for
all w ∈ Km with m � n. Since Mn is formed by a single row and a single column presenting
the equivalence class composed by all the states in K, each pair a, b of states fulfils that
φw(a) = φw(b) for all w ∈ Kn.

Take K2n, every element in K2n is represented as wv where w, v ∈ Kn, hence for each
pair a, b of states we have that φv(a) = φv(b). If φv(a) = c ∈ K then c is the common central
state in the ancestors of wv ∈ K2n, therefore the original evolution rule ϕ has an inverse
evolution rule ϕ−1 : K2n → K and A is reversible.

All the ancestors of wv ∈ K2n have the same left state as we can see by the in-
amalgamations, hence A has Welch indices R = k and L = 1. �

From theorem 2 we obtain an analogous property for reversible automata with Welch
index R = 1.

Corollary 2. For a reversible automaton A = (k, 2, ϕ) with Welch index R = 1, there exists
a sequence of out-amalgamations transforming D into the full shift of k states.

Theorem 2 shows that M is an adequate tool for detecting the in-amalgamations
transforming D into the full shift. For a reversible automaton with Welch index L = 1,
two states a, b ∈ K belong to the same equivalence class in ρ1 if a, b are identical columns
and distinct rows in every position of M. In this case we amalgamate a, b defining a new matrix
M1 where the states a, b appear as a single index u, row u is the union of the entries in rows
a, b in M and column u just keeps the entries of column a in M.

Thus, M is repeatedly transformed into a set of matrices of smaller order to reach a matrix
of order one. Using this feature we shall prove that there are always two matrices D,E such
that DE = M and ED = M1 where M1 presents the in-amalgamation of D.

Theorem 3. For a reversible automaton A = (k, 2, ϕ) with Welch index L = 1, there are two
matrices D,E such that DE = M and ED = M1.

Proof. Take D as the matrix with the row indices of M and the column indices of M1. Each
column a in D is equal to the column in M corresponding with any of the states belonging to
the class represented by index a in M1.

Take E as the matrix with the row indices of M1 and the column indices of M, the entry
(i, j) in E is defined as follows:

(i, j) =
{

1 if j belongs to the class represented by i in M1.
0 otherwise.

(2)
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Table 1. Matrix M for the automaton A = (4, 2, ϕ).

0 1 2 3

0 0 0 0 1
1 1 1 1 0
2 3 3 2 2
3 2 2 3 3

Thus, the product DE has the same row and column indices that M and each column i in
E just takes the elements in D forming the column associated with its class, that is, i forms the
original column i in M, therefore DE = M .

On the other hand, the product ED has the same row and column indices as M1; row i in
E shows what states belong to the equivalence class represented by i. Thus, row i in E just
takes the elements of the class i for each column in D. In this case, the product of each row
and every column is a copy of all the distinct elements, without making a linear combination
of them.

Thus, each row in E amalgamates the entries in D corresponding with the states of the
equivalence class i, therefore ED = M1. �

Theorem 3 depends only on the in-amalgamations transforming M into M1, thus the
same procedure is defined for transforming the matrix Mi into Mi+1, obtaining the following
sequence:

M = D0E0 E0D0 = M1

M1 = D1E1 E1D1 = M2

...

Mn−1 = Dn−1En−1 En−1Dn−1 = Mn

(3)

where Mn is the matrix representing the full shift of k symbols, hence theorem 3 has the
following consequence:

Corollary 3. Reversible automata A = (k, 2, ϕ) with Welch index L = 1 are strong shift
equivalent to the full shift of k symbols with maximum lag k − 1.

There are analogous results for reversible automata with Welch index R = 1 exchanging
the position of Di and Ei in equation (3) for 0 � i � n − 1. An important point is that
theorem 3 establishes a relevant restriction for checking whether the automaton A is reversible;
the matrix M and the consequent matrices M1 . . . Mn−1 must have at least two identical columns
and if a, b are two identical columns then each entry in row a is different from the same entry
in row b.

6. Example

In this section we present an example with the automaton A = (4, 2, ϕ); the evolution rule ϕ

is presented by the matrix M showed in table 1.
For this automaton, the ancestors of each sequence in K3 show Welch indices L = 1

and R = 4. With them we can define the inverse rule ϕ−1, take w ∈ K3, v ∈ K4 such that
ϕ(v) = w, a ∈ K and u ∈ K3 such that au = v; then ϕ−1(w) = a where a is placed on
the left end of w going backwards in the evolution of the automaton. Thus, the Welch index
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Figure 4. Inverse evolution of the automaton A = (4, 2, ϕ); the initial configuration is a ring of
eight cells and for simplicity only some inverse evolutions are presented.

Table 2. Inverse rule of the reversible automaton presented in table 1.

w ϕ−1 (w) w ϕ−1 (w) w ϕ−1 (w) w ϕ−1 (w)

000 0 100 1 200 3 300 2
001 0 101 1 201 3 301 2
002 0 102 1 202 3 302 2
003 0 103 1 203 3 303 2
010 0 110 1 210 3 310 2
011 0 111 1 211 3 311 2
012 0 112 1 212 3 312 2
013 0 113 1 213 3 313 2
020 1 120 0 220 2 320 3
021 1 121 0 221 2 321 3
022 0 122 1 222 2 322 3
023 0 123 1 223 2 323 3
030 0 130 1 230 2 330 3
031 0 131 1 231 2 331 3
032 1 132 0 232 2 332 3
033 1 133 0 233 2 333 3

L = 1 defines the inverse evolution rule at the left side for the sequences in K3. Table 2 shows
the inverse evolution of each w ∈ K3.

An example of the inverse evolution of the automaton is presented in figure 4, where the
evolutions of some inverse neighbourhoods are depicted.

The procedure for reviewing the existence of indirect paths in D yields the following
results for the first row of M:

(i) Entry (0, 1) = 0 in M, therefore there is an indirect path from the self-loop 0 to the
self-loop 1.

(ii) Entry (1, 3) = 0 in row 1, and because there is an indirect path from the self-loop 0 to the
self-loop 1, there is also an indirect path from the self-loop 0 to the self-loop 3.

(iii) As (0, 2) = 0, an indirect path is defined from the self-loop 0 to the self-loop 2, it is the
only indirect path defined in this step because row 2 has no element equal to 0.

(iv) As (0, 3) = 1, there is not another indirect path defined in this step.

Following the same process for the other rows, we obtain that D has a single indirect path
connecting each ordered pair of self-loops. In order to know if A is reversible, let us apply
the in-amalgamation procedure over the columns of M. Table 1 shows that columns 0 and 1
are equal, therefore they will be amalgamated for obtaining a new edge shift; repeating the
procedure we get the sequence of in-amalgamations transforming M into the full shift of k
symbols (table 3).

The graph representation of this transformation is depicted in figure 5.
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Figure 5. In-amalgamations transforming D into the full shift of four elements.

Table 3. Sequence of in-amalgamations transforming M into the full shift.

0 1 2 3
0 0 0 0 1
1 1 1 1 0
2 3 3 2 2
3 2 2 3 3

→
0, 1 2 3

0, 1 0, 1 0, 1 0, 1
2 3 2 2
3 2 3 3

→
0, 1 2, 3

0, 1 0, 1 0, 1
2, 3 3, 2 2, 3

→ 0, 1, 2, 3
0, 1, 2, 3 0, 1, 2, 3

Table 4. Sequence of matrix products transforming M into the full shift of four elements.




0 0 0 1
1 1 1 0
3 3 2 2
2 2 3 3


 =




0 0 1
1 1 0
3 2 2
2 3 3





1 1 0 0

0 0 1 0
0 0 0 1





1 1 0 0

0 0 1 0
0 0 0 1







0 0 1
1 1 0
3 2 2
2 3 3


 =


0, 1 0, 1 1, 0

3 2 2
2 3 3





0, 1 0, 1 1, 0

3 2 2
2 3 3


 =


0, 1 0, 1

3 2
2 3




(
1 0 0
0 1 1

) (
1 0 0
0 1 1

)
0, 1 0, 1

3 2
2 3


 =

(
0, 1 0, 1
3, 2 3, 2

)

(
0, 1 0, 1
3, 2 3, 2

)
=

(
0, 1
3, 2

)
(1 1) (1 1)

(
0, 1
3, 2

)
= (0, 1, 3, 2)

By means of the procedure described in the proof of theorem 3, we obtain the sequence
of matrix products transforming M into the full shift (table 4).

Therefore, A and the full shift of four elements are strong shift equivalent with lag 2.

7. Concluding remarks

The classification of the paths connecting the self-loops in a reversible automaton is useful to
understand how the local behaviour which is not reversible is able to yield an invertible global
behaviour; in this paper we have fully characterized these paths as indirect ones for reversible
automata with Welch index L = 1.

For a reversible automaton, the matrix representation of the evolution rule is very useful
for detecting if a given cellular automaton is reversible and strong shift equivalent with the
full shift, the basis of this result is the relevant work developed by Kari defining equivalence
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relations in accordance with the left extensions of the ancestors in the automaton with a Welch
index 1.

By means of in-amalgamations, it is possible to define a procedure for enumerating
reversible automata with Welch index L = 1 for a given number of states, we just have
to check the existence of identical columns for obtaining the matrix representation of each
in-amalgamation.

A suggested work is to extend this analysis for a reversible automaton with any possible
Welch indices; this study will be useful for knowing the kinds of paths connecting the self-
loops in the corresponding de Bruijn diagram and for characterizing its relation with the full
shift.
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